Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Mol Biol Rep ; 49(3): 2303-2309, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1648443

ABSTRACT

Global vaccination effort and better understanding of treatment strategies provided a ray of hope for improvement in COVID-19 pandemic, however, in many countries, the disease continues to collect its death toll. The major pathogenic mechanism behind severe cases associated with high mortality is the burst of pro-inflammatory cytokines TNF, IL-6, IFNγ and others, resulting in multiple organ failure. Although the exact contribution of each cytokine is not clear, we provide an evidence that the central mediator of cytokine storm and its devastating consequences may be TNF. This cytokine is known to be involved in activated blood clotting, lung damage, insulin resistance, heart failure, and other conditions. A number of currently available pharmaceutical agents such as monoclonal antibodies and soluble TNF receptors can effectively prevent TNF from binding to its receptor(s). Other drugs are known to block NFkB, the major signal transducer molecule used in TNF signaling, or to block kinases involved in downstream activation cascades. Some of these medicines have already been selected for clinical trials, but more work is needed. A simple, rapid, and inexpensive method of directly monitoring TNF levels may be a valuable tool for a timely selection of COVID-19 patients for anti-TNF therapy.


Subject(s)
COVID-19 Drug Treatment , Cytokine Release Syndrome/drug therapy , Pandemics , SARS-CoV-2 , Tumor Necrosis Factor Inhibitors/therapeutic use , Biomarkers , COVID-19/complications , COVID-19/metabolism , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/prevention & control , Drug Repositioning , Humans , Interleukin-6/metabolism , Multiple Organ Failure/etiology , Multiple Organ Failure/prevention & control , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Patient Selection , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Signal Transduction/drug effects , Tumor Necrosis Factor Inhibitors/pharmacology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/physiology
2.
Viruses ; 13(11)2021 11 03.
Article in English | MEDLINE | ID: covidwho-1502528

ABSTRACT

Men are disproportionately affected by the coronavirus disease-2019 (COVID-19), and face higher odds of severe illness and death compared to women. The vascular effects of androgen signaling and inflammatory cytokines in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-mediated endothelial injury are not defined. We determined the effects of SARS-CoV-2 spike protein-mediated endothelial injury under conditions of exposure to androgen dihydrotestosterone (DHT) and tumor necrosis factor-a (TNF-α) and tested potentially therapeutic effects of mineralocorticoid receptor antagonism by spironolactone. Circulating endothelial injury markers VCAM-1 and E-selectin were measured in men and women diagnosed with COVID-19. Exposure of endothelial cells (ECs) in vitro to DHT exacerbated spike protein S1-mediated endothelial injury transcripts for the cell adhesion molecules E-selectin, VCAM-1 and ICAM-1 and anti-fibrinolytic PAI-1 (p < 0.05), and increased THP-1 monocyte adhesion to ECs (p = 0.032). Spironolactone dramatically reduced DHT+S1-induced endothelial activation. TNF-α exacerbated S1-induced EC activation, which was abrogated by pretreatment with spironolactone. Analysis from patients hospitalized with COVID-19 showed concordant higher circulating VCAM-1 and E-Selectin levels in men, compared to women. A beneficial effect of the FDA-approved drug spironolactone was observed on endothelial cells in vitro, supporting a rationale for further evaluation of mineralocorticoid antagonism as an adjunct treatment in COVID-19.


Subject(s)
COVID-19/pathology , Dihydrotestosterone/pharmacology , Endothelium, Vascular/pathology , Inflammation , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/physiology , Spironolactone/pharmacology , Angiotensin Receptor Antagonists/pharmacology , COVID-19/physiopathology , COVID-19/virology , Cell Adhesion Molecules/blood , Cells, Cultured , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Female , Humans , Male , Sex Characteristics , Tumor Necrosis Factor-alpha/pharmacology , Tumor Necrosis Factor-alpha/physiology , Valsartan/pharmacology
3.
J Alzheimers Dis ; 79(3): 931-948, 2021.
Article in English | MEDLINE | ID: covidwho-1033235

ABSTRACT

Proinflammatory cytokines such as tumor necrosis factor (TNF), with its now appreciated key roles in neurophysiology as well as neuropathophysiology, are sufficiently well-documented to be useful tools for enquiry into the natural history of neurodegenerative diseases. We review the broader literature on TNF to rationalize why abruptly-acquired neurodegenerative states do not exhibit the remorseless clinical progression seen in those states with gradual onsets. We propose that the three typically non-worsening neurodegenerative syndromes, post-stroke, post-traumatic brain injury (TBI), and post cardiac arrest, usually become and remain static because of excess cerebral TNF induced by the initial dramatic peak keeping microglia chronically activated through an autocrine loop of microglial activation through excess cerebral TNF. The existence of this autocrine loop rationalizes post-damage repair with perispinal etanercept and proposes a treatment for cerebral aspects of COVID-19 chronicity. Another insufficiently considered aspect of cerebral proinflammatory cytokines is the fitness of the endogenous cerebral anti-TNF system provided by norepinephrine (NE), generated and distributed throughout the brain from the locus coeruleus (LC). We propose that an intact LC, and therefore an intact NE-mediated endogenous anti-cerebral TNF system, plus the DAMP (damage or danger-associated molecular pattern) input having diminished, is what allows post-stroke, post-TBI, and post cardiac arrest patients a strong long-term survival advantage over Alzheimer's disease and Parkinson's disease sufferers. In contrast, Alzheimer's disease and Parkinson's disease patients remorselessly worsen, being handicapped by sustained, accumulating, DAMP and PAMP (pathogen-associated molecular patterns) input, as well as loss of the LC-origin, NE-mediated, endogenous anti-cerebral TNF system. Adrenergic receptor agonists may counter this.


Subject(s)
Brain Injuries/physiopathology , Neurodegenerative Diseases/physiopathology , Stroke/physiopathology , Tumor Necrosis Factor-alpha/physiology , Alzheimer Disease/diagnosis , Alzheimer Disease/physiopathology , Alzheimer Disease/therapy , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Brain/physiopathology , Brain Injuries/diagnosis , Brain Injuries/therapy , COVID-19/diagnosis , COVID-19/physiopathology , COVID-19/therapy , Disease Progression , Etanercept/therapeutic use , Heart Arrest/diagnosis , Heart Arrest/physiopathology , Heart Arrest/therapy , Humans , Locus Coeruleus/physiopathology , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/therapy , Norepinephrine/physiology , Parkinson Disease/diagnosis , Parkinson Disease/physiopathology , Parkinson Disease/therapy , Risk Factors , SARS-CoV-2 , Stroke/diagnosis , Stroke/therapy , Survivors , Tumor Necrosis Factor-alpha/antagonists & inhibitors
4.
Pharmacol Res Perspect ; 8(4): e00631, 2020 08.
Article in English | MEDLINE | ID: covidwho-676220

ABSTRACT

We propose a new hypothesis that the established drug pentoxifylline deserves attention as a potential repurposed therapeutic for COVID-19. Pentoxifylline is an immunomodulator with anti-inflammatory properties. It is a nonselective phosphodiesterase inhibitor and through Adenosine A2A Receptor-mediated pathways reduces tumor necrosis factor alpha, interleukin 1, interleukin 6, and interferon gamma and may act to reduce tissue damage during the cytokine storm host response to SARS-CoV-2 infection. This agent has been used clinically for many years and has a favorable profile of safety and tolerability. Pre-clinical data support pentoxifylline as effective in cytokine-driven lung damage. Clinical studies of pentoxifylline in radiation and cytokine-induced lung damage in humans are positive and consistent with anti-inflammatory efficacy. Pentoxifylline is a readily available, off-patent and inexpensive drug, suitable for large-scale use including in resource-limited countries. Current trials of therapeutics are largely focused on the inhibition of viral processes. We advocate urgent randomized trials of pentoxifylline for COVID-19 as a complementary approach to target the host responses.


Subject(s)
Betacoronavirus , Coronavirus Infections/drug therapy , Pentoxifylline/therapeutic use , Phosphodiesterase Inhibitors/therapeutic use , Pneumonia, Viral/drug therapy , COVID-19 , Humans , Pandemics , Pentoxifylline/pharmacology , Research Design , SARS-CoV-2 , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/physiology , COVID-19 Drug Treatment
5.
Med Hypotheses ; 143: 110117, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-652869

ABSTRACT

With rapid spread of severe acute respiratory syndrome- corona virus-2 (SARS-COV-2) globally, some new aspects of the disease have been reported. Recently, it has been reported the incidence of Kawasaki-like disease among children with COVID-19. Since, children had been known to be less severely affected by the virus in part due to the higher concentration of Angiotensin converting enzyme (ACE)-2 receptor, this presentation has emerged concerns regarding the infection of children with SARS-COV2. ACE2 has anti-inflammatory, anti-fibrotic and anti-proliferative characteristics through converting angiotensin (Ag)-II to Ang (1-7). ACE2 receptor is downregulated by the SARS-COV through the spike protein of SARS-CoV (SARS-S) via a process that is tightly coupled with Tumor necrosis factor (TNF)-α production. TNF-α plays a key role in aneurysmal formation of coronary arteries in Kawasaki disease (KD). Affected children by COVID-19 with genetically-susceptible to KD might have genetically under-expression of ACE2 receptor that might further decrease the expression of ACE2 due to the downregulation of the receptor by the virus in these patients. It appears that TNF- α might be the cause and the consequence of the ACE2 receptor downregulation which results in arterial walls aneurysm. Conclusion: Genetically under-expression of ACE2 receptor in children with genetically-susceptible to KD who are infected with SARS-CoV-2 possibly further downregulates the ACE2 expression by TNF-α and leads to surge of inflammation including TNF-α and progression to Kawasaki-like disease.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/complications , Models, Immunological , Mucocutaneous Lymph Node Syndrome/etiology , Pandemics , Pneumonia, Viral/complications , Angiotensin-Converting Enzyme 2 , Asia/epidemiology , COVID-19 , Child , Coronary Vessels/immunology , Coronary Vessels/pathology , Coronavirus Infections/epidemiology , Coronavirus Infections/genetics , Cytokine Release Syndrome/etiology , Disease Progression , Endothelium, Vascular/virology , Genetic Predisposition to Disease , Humans , Inflammation , Macrophage Activation , Mucocutaneous Lymph Node Syndrome/epidemiology , Mucocutaneous Lymph Node Syndrome/genetics , Mucocutaneous Lymph Node Syndrome/immunology , Netherlands/epidemiology , Peptidyl-Dipeptidase A/biosynthesis , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/physiology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/genetics , Receptors, Virus/biosynthesis , Receptors, Virus/genetics , Receptors, Virus/physiology , SARS-CoV-2 , Seasons , Spike Glycoprotein, Coronavirus/physiology , Tumor Necrosis Factor-alpha/physiology , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL